

Identifying and Eliminating the **Performance Variability on ASCI Q**

Fabrizio Petrini

Darren Kerbyson, Adolfy Hoisie, Scott Pakin, Harvey Wasserman, Juan Fernandez-Peinador, David Addison, Mike Lang

> Performance and Architectures Laboratory (PAL) CCS-3, Los Alamos National Laboratory March 2003

Funded by: ASCI Ongoing Computing LAUR 03-0528

- Performance assessment of ASCI Q
- Our performance expectations for QA/QB, and the reality
- Identification of performance factors
 - Application performance and breakdown into components
 - Application performance variability
 - Configuration of system
- Detailed examination of system effects
 - Identification of O/S effects
 - Effect of scaling 1024 nodes and beyond
 - Quantification of the impact on achievable performance
- Towards the Elimination of overheads
 - Average improvement of 55% (peak 85%) on 3716 processors of the Q machine

Report on this work is available from www.c3.lanl.gov/~fabrizio/publications.html

"Identifying and Eliminating the Performance Variability on ASCI Q", LA-UR-03-0138.

architecture@lan

System Research

- Scalable resource management (STORM): job launching on thousands of processors in few hundreds of milliseconds
- Job scheduling and coscheduling: increased throughput
- Performance evaluation of high performance networks
- System-level fault-tolerance
- Communication libraries: "deterministic" MPI

Modeled and Measured Performance of Sage

- Predictions available from PAL performance Model
- Latest two sets of measurements are consistent (> 80% longer than model)

LAL Using fewer PEs per Node

- Test performance using 1,2,3 and 4 PEs per node
- N.B. reduces the number of compute processors available

Using fewer PEs per node (2)

Measurements match model almost exactly for 1,2 and 3 PEs per node!

Performance issue only occurs when using 4 PEs per node

Look at SAGE in terms of main components:

- Put/Get (point-to-point boundary exchange)
- Collectives (allreduce, broadcast, reduction)

Performance issue seems to occur only on collective operations

CCS-3

Performance of the collectives

Measure collective performance separately

Collectives mirror the performance of the application

Identifying the problem within Sage

Sage Allreduce

Simplify

Exposing the problems with simple benchmarks

Allreduce

Challenge: identify the simplest benchmark that exposes the problem,

Benchmarks

Interconnection network and communication libraries

- The initial (obvious) suspects were the interconnection network and the MPI implementation
- We tested in depth the network, the low level transmission protocols and several allreduce algorithms
- We also implemented allreduce in the Network Card
- By changing the synchronization mechanism we were able to reduce the latency of an allreduce benchmark by a factor of 7
- But we only got small improvements in Sage (5%)

We were not able to link the performance variability problems to either the network or MPI

Computational noise

- After having ruled out the network and MPI we focused our attention on the compute nodes
- Our hypothesis is that the noise is generated inside the processing nodes
- The noise "freezes" a running process for a certain amount of time and generates a "computational" hole

Computational noise: intuition

- We are running 4 processes on 4 distinct processors on an Alphaserver ES45
- The computation of one process is interrupted by an external event (e.g., system daemon or kernel)

Computational noise: 3 processes on 3 processors

- We are running 3 processes on 3 distinct processors on Alphaserver ES45
- The "noise" can run on the 4th processor without interrupting the other 3 processes

A simple benchmark

- In order to narrow the search space we implemented a simple benchmark that consumes CPU cycles and:
 - does not perform any I/O
 - does not perform any communication
 - does not perform any synchronization
 - does not perform any main memory access
 - does not perform any cache access

 We ran this benchmark in isolation on the whole QB (4096) processors/1024 nodes) after a global reboot

A simple benchmark


```
double compute( double work )
 unsigned_int64_t i, dum;
 timer_t t1, t2;
 double t;
 get_clock(t1);
 /* waste CPU cycles in an amount approximate to the amount of work */
 for (i = COMPUTE_K * work; i; i--)
  dum = i + 1;
 get_clock( t2 );
 diff( t, t2, t1 );
 return t;
```


Coarse grained measurement

We execute the computational loop for 1000 seconds on all 4096 nodes of QB

Coarse grained computational overhead per process

The slowdown per process is small, between 1% and 2.5%

Fine grained measurement

- We run the same benchmark for 1000 seconds, but we measure the run time every millisecond
- Fine granularity representative of many ASCI codes

Fine grained computational overhead per node

- We now compute the slowdown per-node, rather than perprocess
- The noise has a clear, per cluster, structure

Noise in a 32 Node Cluster

- The Q machine is organized in 32 node clusters (TruCluster) ccs-3
- In each cluster there is a cluster manager (node 0), a quorum node (node 1) and the RMS data collection (node 31)

Computational Overhead in a 32 Node Cluster

Per node noise distribution

- Plot distribution of one million, 1 ms computational chunks
- In an ideal, noiseless, machine the distribution graph is
 - a single bar at 1 ms of 1 million points per process (4 million per node)
- Every outlier identifies a computation that was delayed by external interference
- We show the distributions for the standard cluster node, and also nodes 0, 1 and 31

Cluster Node (2-30)

 10% of the times the execution of the 1 ms chunk of computation is delayed

Latency Distribution on a Cluster Node

Node 0, Cluster Manager

We can identify 4 main sources of noise

Node 1, Quorum Node

One source of heavyweight noise (335 ms!)

Many fine grained interruptions, between 6 and 8 milliseconds CCS-3

The effect of the noise

 An application is usually a sequence of a computation followed by a synchronization (collective):

 But if an event happens on a single node then it can affect all the other nodes

Effect of System Size

 The probability of a random event occurring increases with the node count.

Noise and allreduce

 We now try to correlate the computational noise in the nodes with the allreduce, by adding a global barrier at the end of each computational chunk of the basic benchmark

Computational granularity

Effect of Co-scheduling

O/S events will occur at the same time on different nodes hence reducing impact on performance

Barrier vs Allreduce

- The results show that there is very little difference between barrier (executed in HW, which is almost instantaneous) and allreduce
- The graph confirms that the problem is in the process skew and not in the network

A discrete event simulator to analyze the noise

- We developed a discrete event simulator to analyze the impact of each single source of noise
- With this simulator we can selectively remove sources of noise
- We can also explore the impact of the noise on larger configurations and different computational granularities without running the actual experiments

What is the primary source of noise?

Modeled and Experimental Data

- The model is a close approximation of the experimental data
- The primary bottleneck is the noise generated by the compute nodes (Tru64)

Noise reduction: first step

- removed about 10 daemons from all nodes (including: envmod, insightd, snmpd, lpd, niff)
- 2. decreased the frequency of RMS monitoring by a factor of 2 on each node (from an interval of 30s to 60s)
- moved several daemons from nodes 1 and 2 to node 0 on each cluster.

Improvements in the Barrier Synchronization Latency

Noise reduction: second step

We configured out nodes 0 and 31

Paul Performance Improvements

The performance of Sage is up to 55% better on average, and 82% better considering the minimum run time

Number Processors	% Improvement after noise removal	% Potential Total Improvement
512	20%	30%
1024	21%	38%
2048	43%	60%
3072	53%	72%
3716	55%	82%

Still, a lot of noise left on Q!

Latency Distribution on a Cluster Node

Generalizing these results to other applications other than Sage

- An interesting property correlates the computational granularity of a balanced bulk-synchronous application correlates to the type of noise.
- The intuition is the following: while any source of noise has a negative impact on the overall behavior of the machine, a few sources of noises tend to have a major impact on a given application.
- As a rule of thumb, the computational granularity of the application "enters in resonance" with the noise that has the same magnitude
- The performance can be enhanced by selectively removing sources of noise
- We can provide a reasonable estimate of the performance improvement knowing the computational granularity of a given application.

Impact of Different Sources of Noise

 We consider the impact of each source of noise for each type of computational granularity in the largest processor configuration

Cumulative Noise Distribution, Sequence of Barriers with No Computation

 Most of the latency is generated by the fine-grained, highfrequency noisie of the cluster nodes

Barriers with 1 ms of Computational Granularity

The major source of noise is now RMS

Cumulative Noise Distribution, Barrier Synchronization, 1 ms Granularity

Barriers with 5ms of Computational Granularity

• The major source of noise is the low frequency, coarse grained noise of node 0

Cumulative Noise Distribution, Barrier Synchronization, 5 ms Granularity

- Identified performance issues on Q
 - Used modeling to determine that a problem exists
 - Developed computation kernels to quantify:
 - » frequency and duration of O/S events
 - Effect increases with the # nodes
 - Impact is determined by the computation granularity in an application
- Successfully explained and fixed the performance issues
- Presented a simple methodology to generalize these results to other applications

PAL Acknowledgements

- For access to QB (and for using it in the open):
 - Manuel Vigil, Ray Miller
- **Support during testing:**
 - Amos Lovato, Joe Kleczka, Malcom Lundin, Rick Light
- HP / COMPAQ / DIGITAL Marlborough for technical interactions:
 - Ed Benson, Niraj Srivastava, Dick Foster
- Quadrics for technical discussions and support on the network
- Terry Jones (LLNL) for his insightful comments on the noise elimination

Report will be available from the PAL homepage:

http://www.c3.lanl.gov/par_arch

